银河系中心的食人恒星以一种可怕的方式保持年轻

作者:小菜 更新时间:2024-07-04 点击数:
简介:一幅插图显示,在银河系中心的超大质量黑洞周围,一颗大质量恒星正在吞噬一颗较小的恒星(图片uux.cn/Robert Lea(与

【菜科解读】

一幅插图显示,在银河系中心的超大质量黑洞周围,一颗大质量恒星正在吞噬一颗较小的恒星(图片uux.cn/Robert Lea(与Canva共同创作))据美国太空网(Robert Lea):科学家们发现了银河系中心一些恒星明显年轻背后的可怕秘密——这些恒星参与了围绕银河系超大质量黑洞人马座a*或Sgr a*的宇宙毁灭德比。

就像17世纪连环杀手伊丽莎白·巴托里(Elizabeth Bathory)的宇宙版本一样,据说她试图通过沐浴受害者的血液来保持年轻的光彩,其中一些恒星似乎通过撞击邻居的恒星并用偷来的恒星材料包裹自己来保持年轻。

银河系中心的食人恒星以一种可怕的方式保持年轻

这种吃人的过程使恒星受害者成为一颗奇怪的、被剥光的僵尸恒星,也注定了吃人恒星的早逝。

这只是西北大学科学家对1000颗围绕银河系中心超大质量黑洞运行的密集恒星进行模拟后得出的奇怪发现的一部分。

西北大学的研究负责人兼科学家Sanaea C.Rose告诉Space.com:观测其他星系的中心非常困难,因为它们太远了。

研究我们自己的星系中心可以告诉我们所有星系中心发生了什么。

银河系的中心是天文学家可以从地球上观测到的最极端的环境之一。

这个区域是Sgr A*的所在地,它不仅是一个质量相当于450万个太阳的黑洞,而且是一个由100多万颗恒星环绕的宇宙怪物。

这些恒星被挤在一个约4光年宽的区域,大约相当于太阳与其最近的恒星邻居半人马座比邻星之间的距离。

这意味着像恒星碰撞这样的事件在银河系人口稀少的地区相对罕见,在Sgr A*周围几乎很常见。

罗斯说:银河系中心的超大质量黑洞被一个密度非常高的星团包围,其中许多恒星在轨道上以每秒数百至数千英里的速度旋转。

因此,研究银河系狂暴的心脏可以揭示恒星在超大质量黑洞极端引力的影响下是如何行为、进化和相互作用的关于宇宙毁灭德比的部分虽然该团队的模拟考虑了许多因素和特征,如恒星质量和星团密度,但在确定银河系中心附近恒星的命运时,其中一个因素尤为重要。

Rose解释说,一般来说,一颗恒星与Sgr a*的距离很好地表明了它是否会与另一颗恒星相撞,以及会发生什么样的碰撞。

她说:距离超大质量黑洞越近,星团的密度就越大,因此碰撞的可能性就越大。

银河系中心的食人恒星以一种可怕的方式保持年轻

这有点像在高峰时段穿过纽约市一个拥挤得令人难以置信的地铁站。

如果你没有与其他人相撞,那么你就会非常靠近他们。

恒星离a*中士越近,黑洞的巨大引力就越快地将其旋转。

因此,超大质量黑洞附近的恒星可以以每小时1800万英里(每小时2900万公里)左右的速度移动,这使得银河系的中心地带更像是一场拆迁德比,而不是拥挤的纽约地铁。

这意味着,Sgr A*最内侧区域的碰撞,即地球和太阳之间距离约2000倍以内的区域,即0.01秒差距,往往具有破坏性。

银河系中心的超大质量黑洞Sgr A*正在进行一场宇宙毁灭德比(图片uux.cn/EHT Collaboration)在Sgr A*大约0.01秒差距内的这些恒星经常相互碰撞,但这很少是正面碰撞。

这意味着,就像一辆拆迁德比车在行驶前保险杠被扯掉一样,撞击会导致一颗恒星脱落外层,然后与另一个邻居一起在碰撞路线上奔跑。

罗斯说:它们互相攻击,然后继续前进。

它们只是互相擦伤,就好像在激烈地击掌。

然而,经历这种混乱的恒星损失了多少物质,取决于它移动的速度以及它与碰撞的恒星重叠的程度。

这些破坏性碰撞的一个结果是,由于沐浴在前者释放出的富含氢气的喷出恒星物质中,恒星和看起来年轻的恒星形成了一个奇怪的群体。

然而,获得这种年轻的外表是有代价的。

一颗恒星的质量越大,它就越快燃烧掉其固有核聚变所需的燃料,这一过程可以防止它在自身重力下坍塌。

因此,通过堆积这些被盗的物质,这些大质量恒星缩短了自己的生命。

银河系中心的食人恒星以一种可怕的方式保持年轻

离Sgr A*更远,大约0.1秒差距,大约是太阳和地球距离的21000倍,恒星碰撞的频率更低,速度更慢。

Rose及其同事的模拟表明,当这些较慢的碰撞发生时,两颗恒星很可能会完全合并为一颗巨星。

她补充道:0.01秒差距以外的碰撞更有可能使碰撞恒星合并。

距离Sgr A*0.1秒差距以内的恒星一生中至少有一次碰撞的几率非常高。

Rose解释说,使用这个模型来解决对银河系中心恒星的一些无法解释的观测,最令人满意的方面之一是它基于一个相对简单的计算。

她说:我个人发现,我的研究非常特别,因为它是基于碰撞时间尺度的计算,这是大学物理教育相对早期教授的。

用一个相对简单的计算来了解一个极其复杂的环境,这与我们在太阳能社区遇到的任何环境都不一样,真是太棒了。

到目前为止,该团队已经使用该模型进行了两项研究,一项于本月发表在《天体物理杂志快报》上,另一项于2023年9月发表,但他们还没有完成。

Rose总结道:下一步是对目前模型中的物理进行扩展。

#p#分页标题#e#

银河中心是一个极其复杂的环境,所以我们总是可以添加一些东西,但我们的工作从来没有完成!罗斯星期四(4月4日)在加利福尼亚州萨克拉门托举行的美国物理学会4月会议上介绍了这项研究,这是粒子天体物理学和银河中心会议的一部分。

新研究表明银河系或有20亿颗行星像地球

一项新研究表明,天空中大约每37至70颗类日恒星中也许就有一颗正孕育着一个“外星地球”。

  研究人员说,研究结果暗示,我们的银河系中也许存在着数十亿颗类地行星。

  这些新的计算结果基于开普勒太空望远镜收集的数据。

开普勒太空望远镜在2月轰动全球,它发现了超过1200颗太阳系外潜在行星,包括68个可能与地球大小类似的行星。

  美国航天局位于加利福尼亚州帕萨迪纳的喷气推进实验室的科学家们关注的主要是位于其恒星宜居带内、与地球大小类似的行星。

宜居带是指,允许星球表面存在液态水的区域。

  研究人员分析开普勒4个月来收集的原始数据后确定,在所有类日恒星中,预计有1.4%到2.7%的恒星拥有类地行星,这些类地行星的直径是地球直径的0.8至2倍,且位于其恒星的宜居带内。

  喷气推进实验室的天文学家约瑟夫·卡坦扎里蒂说:“这意味着,存在许多与地球大小类似的星球,在银河系中有20亿颗。

在数量这么多的情况下,其中有一些行星也许存在生命甚至是智慧生命的概率比较大。

这还只是我们所处的银河系,另外还有500亿个其他星系。

”  在研究了开普勒收集的3至4年的数据后,科学家们预言,将发现总共12个类地星球。

他们还说,其中有4个已经在数据公布后的4个月内被陆续发现。

科学家们预测,银河系中可能总共有500亿颗行星,尽管它们不全都是大小与地球类似且位于其恒星宜居带内。

世界最神秘十大未解之谜:生命的基石可以在年轻恒星周围迅速形成

据美国太空网(Robert Lea):长期以来,科学家们一直在质疑,生命所需的复杂分子是如何在太阳年轻时的动荡和暴力环境中形成的。

理论上,一种名为球粒陨石的陨石家族为地球提供了适合生命的物质。

但问题是,首先是如何将含有碳、氮和氧等元素的复杂有机分子密封在这些陨石中的?新的研究表明,这些大分子(生命的基本组成部分)形成的热点可能是婴儿恒星周围旋转物质盘中的所谓尘埃陷阱。

在这里,来自中心年轻恒星的强烈星光可以在短短几十年内照射积累的冰和尘埃,形成含碳大分子,这是相对快速的。

这意味着当较大的星子形成行星时,大分子可能已经存在,或者它们可能以小鹅卵石的形式密封在小行星中。

这些小行星可能会在太空中反复碰撞而破裂,形成更小的天体。

其中一些可能以陨石的形式到达地球。

含有复杂分子的冰粒子的图示(图片uux.cn/ESO/L.Cal ada)伦敦大学学院穆拉德空间科学实验室的团队成员Paola Pinilla告诉Space.com:在行星可能需要容纳生命的大分子物质的形成中,发现集尘器的新的关键作用是令人难以置信的。

集尘器是尘粒生长为鹅卵石和星子的有利区域,而鹅卵石和星子子是行星的组成部分。

Pinilla解释说,在这些区域,非常小的粒子可以通过持续的破坏性碰撞不断地被重建和补充。

这些微小的微米级颗粒可以很容易地被提升到围绕婴儿恒星的扁平恒星形成物质云的上层,称为原行星盘。

Pinilla说,一旦到达这里,这些粒子就可以从它们的婴儿恒星接收适量的辐射,从而有效地将这些微小的冰粒子转化为复杂的大分子物质。

在实验室里复制太阳系的早期像太阳这样的恒星是在巨大的星际气体和尘埃云中形成过度密集斑块时诞生的。

首先成为原恒星,婴儿恒星体从其诞生云的剩余部分收集物质,堆积在其核心中引发氢与氦核聚变所需的质量上。

这是定义恒星主序星寿命的过程,对于围绕太阳质量的恒星来说,这一寿命将持续约100亿年。

这颗年轻的恒星被一个原行星盘包围着,原行星盘是在它的创造和提升到主序星过程中没有被消耗的物质。

顾名思义,植物是从这种物质和圆盘内形成的,但它也解释了彗星和小行星的起源。

我们的太阳系大约在45亿年前经历了这个创造过程。

之前在地球实验室进行的研究表明,当这些原行星盘受到星光照射时,它们内部可以形成数百个原子的复杂分子。

这些分子主要由碳构成,类似于黑烟或石墨烯。

围绕婴儿恒星PDS 70的原行星盘至少有两颗正在形成的行星。

(图片uux.cn/ALMA(ESO/NAOJ/NRAO)/Benisty等人)尘埃阱是原行星盘中的高压位置,分子的运动在这里减慢,尘埃和冰粒可以积聚。

这些区域的较慢速度可以使颗粒生长,并在很大程度上避免导致碎片化的碰撞。

这意味着它们可能对行星的形成至关重要。

该团队想知道星光给这些区域带来的辐射是否会导致复杂的大分子形成,并使用计算机建模来测试这一想法。

该模型基于阿塔卡马大型毫米/亚毫米阵列(ALMA)收集的观测数据,该阵列由智利北部的66台射电望远镜组成。

莱顿大学的团队成员Nienke van der Marel说:我们的研究是天体化学、ALMA观测、实验室工作、尘埃演化和太阳系陨石研究的独特结合。

我们现在可以使用基于观测的模型来解释大分子是如何形成的,这真的非常酷。

该模型向团队透露,在除尘器中创建大分子是一个可行的想法。

伯尔尼大学的团队负责人Niels Ligterink说:当然,我们原本希望得到这样的结果,但令人惊讶的是,结果如此明显。

我希望同事们能更多地关注重辐射对复杂化学过程的影响。

大多数研究人员专注于几十个原子大小的相对较小的有机分子,而球粒陨石大多含有大分子。

在不久的将来,我们期待着使用阿塔卡马大型毫米阵列(ALMA)等强大的望远镜进行更多的实验室实验和观测来测试这些模型,Pinilla总结道。

该团队的研究于周二(7月30日)发表在《自然天文学》杂志上。

加入收藏
Tag: 恒星 银河系
               

银河系中心的食人恒星以一种可怕的方式保持年轻

点击下载文档

格式为doc格式

  • 账号登录
社交账号登录