gpu是什么和cpu的分别

作者:小菜 更新时间:2025-01-06 点击数:
简介:随着科技的发展,越来越多的人接触到电脑,那么你了解电脑中的CPU和GPU吗?你知道它们有什么区别吗?今天小编带你来看下。

电脑型号:惠普(HP)战66五代 锐龙版

【菜科解读】

随着科技的发展,越来越多的人接触到电脑,那么你了解电脑中的CPU和GPU吗?你知道它们有什么区别吗?今天小编带你来看下。

电脑型号:惠普(HP)战66五代 锐龙版

系统版本:Windows 11专业版

一、GPU和CPU是什么?

CPU:中央处理器(英文Central Processing Unit)是一台计算机的运算核心和控制核心。

CPU、内部存储器和输入/输出设备是电子计算机三大核心部件。

其功能主要是解释计算机指令以及处理计算机软件中的数据。

GPU:英文全称Graphic Processing Unit,中文翻译为 图形处理器 。

一个专门的图形核心处理器。

GPU是显示卡的 大脑 ,决定了该显卡的档次和大部分性能,同时也是2D显示卡和3D显示卡的区别依据。

2D显示芯片在处理3D图像和特效时主要依赖CPU的处理能力,称为 软加速 。

3D显示芯片是将三维图像和特效处理功能集中在显示芯片内,也即所谓的 硬件加速 功能。

二、GPU与CPU有什么区别?

CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景。

主要区别如下。

CPU需要很强的通用性来处理各种不同的数据类型,同时又要逻辑判断又会引入大量的分支跳转和中断的处理。

这些都使得CPU的内部结构异常复杂。

而GPU面对的则是类型高度统一的、相互无依赖的大规模数据和不需要被打断的纯净的计算环境。

于是CPU和GPU就呈现出非常不同的架构。

GPU采用了数量众多的计算单元和超长的流水线,但只有非常简单的控制逻辑并省去了Cache。

而CPU不仅被Cache占据了大量空间,而且还有有复杂的控制逻辑和诸多优化电路,相比之下计算能力只是CPU很小的一部分。

CPU 基于低延时的设计:

CPU有强大的ALU(算术运算单元),它可以在很少的时钟周期内完成算术计算。

当今的CPU可以达到64bit 双精度。

执行双精度浮点源算的加法和乘法只需要1~3个时钟周期。

CPU的时钟周期的频率是非常高的,达到1.532~3gigahertz(千兆HZ, 10的9次方).大的缓存也可以降低延时。

保存很多的数据放在缓存里面,当需要访问的这些数据,只要在之前访问过的,如今直接在缓存里面取即可。

复杂的逻辑控制单元。

当程序含有多个分支的时候,它通过提供分支预测的能力来降低延时。

数据转发。

当一些指令依赖前面的指令结果时,数据转发的逻辑控制单元决定这些指令在pipeline中的位置并且尽可能快的转发一个指令的结果给后续的指令。

这些动作需要很多的对比电路单元和转发电路单元。

GPU是基于大的吞吐量设计。

GPU的特点是有很多的ALU和很少的cache. 缓存的目的不是保存后面需要访问的数据的,这点和CPU不同,而是为thread提高服务的。

如果有很多线程需要访问同一个相同的数据,缓存会合并这些访问,然后再去访问dram(因为需要访问的数据保存在dram中而不是cache里面),获取数据后cache会转发这个数据给对应的线程,这个时候是数据转发的角色。

但是由于需要访问dram,自然会带来延时的问题。

GPU的控制单元(左边黄色区域块)可以把多个的访问合并成少的访问。

GPU的虽然有dram延时,却有非常多的ALU和非常多的thread. 为啦平衡内存延时的问题,我们可以中充分利用多的ALU的特性达到一个非常大的吞吐量的效果。

尽可能多的分配多的Threads.通常来看GPU ALU会有非常重的pipeline就是因为这样。

所以与CPU擅长逻辑控制,串行的运算。

和通用类型数据运算不同,GPU擅长的是大规模并发计算,这也正是密码破解等所需要的。

所以GPU除了图像处理,也越来越多的参与到计算当中来。

上面说的有点专业化,接下来就简单说一下,他们两个到底差在哪?

CPU(Central Processing Unit)是电脑最主要的部件,他的主要功能是解释计算机指令以及处理计算机软件中的数据,说白了就是做指挥工作,统筹各方面。

CPU相当于整个电脑的心脏,而GPU相当于显卡的心脏。

普通的处理器CPU差不多双核心四线程,目前市面上最高端的桌面处理器i9-7980XE(RMB1.5万)不过十八核心三十六线程。

GPU则不同,就拿普通的2000块的游戏显卡RX 480来说,RX480的GPU芯片计算单元划分为36个CU计算核心,每个CU核心又包含了64个流处理器计算核心,所以总共就是36X64=2304个流处理器计算核心。

CPU相对于GPU就像老教授和小学生,拿i9-7980XE和RX480举个例子,出一套小学数学试卷,老教授刚做一道题,两千多名学生一人一题早就交卷子了。

如果套高数卷子,老教授做完学生们一道也不会做。

三、训练神经网络GPU优于CPU

很多个简单的工作,交给GPU显然更适合。

其实在早期,神经网络都是用CPU训练的。

即使现在,像TensorFlow这样的流行框架也支持在CPU上运行。

那么,既然CPU和GPU都可以训练神经网络,为什么一般用GPU训练神经网络?很简单,因为GPU比CPU快很多。

比如,Victor Dibia(IBM研究院Research Staff Member)基于Tensorflow框架训练了一个实时检测手部的网络。

训练这样一个神经网络要花多久?CPU上大约要12天,而GPU上则是5小时。

(我们这里不讨论具体的型号,关键是两者的比例。

CPU和GPU的差距太大了)。

而且,实际上这个神经网络的训练时间已经通过迁移学习大大缩短了。

迁移学习指直接拿训练好的图像分类的模型来用,只是重新训练最后一层或几层网络以检测手部,所以能快很多。

那如果从头开始训练的话(有的时候没有现成的模型可供迁移),可能要几周甚至几个月。

这还是GPU的情况。

按照上面的比例,换算成CPU,那基本上就太慢太慢,慢到不现实的程度。

GPU之所以比CPU快好多,主要是因为,从运算的角度来看,神经网络主要是由大量的浮点矩阵构成的。

而现代的神经网络,可能有几千到几百万的浮点矩阵(所谓深度学习),因此需要很大的内存带宽来访问这些海量的浮点矩阵。

而GPU的内存带宽比CPU高很多。

比如Intel的Core i9-7980XE内存带宽约为57GB/s,而NVIDIA的Tesla P100带宽高达900GB/s。

使用神经网络训练,一个最大的问题就是训练速度的问题,特别是对于深度学习而言,过多的参数会消耗很多的时间,在神经网络训练过程中,运算最多的是关于矩阵的运算,这个时候就正好用到了GPU,GPU本来是用来处理图形的,但是因为其处理矩阵计算的高效性就运用到了深度学习之中。

希望以上内容可以对你有所帮助。

gpu是什么,gpu和cpu的区别,gpu
加入收藏
               

gpu是什么和cpu的分别

点击下载文档

格式为doc格式

  • 账号登录
社交账号登录