祖布林发现,这种“彗星交换”事件可能是地球多次物种大灭绝的始作俑者。

【菜科解读】
北京时刻8月20日音据国外媒体报道,近期一项研讨指出,曩昔无数年来,生命有过许屡次散播到银河系各处的机会,而地球便是要害分散点之一。
在曩昔的46亿年里,太阳在世界中做随机运动时,曾屡次靠近其它恒星。
美国科罗拉多州公司Pioneer Astronautics董事长、该研讨的首要作者罗伯特·祖布林 Robert Zubrin指出,在这种“密切相遇”进程中,在行星系外围运动的彗星便或许被撞离原来的系统,朝另一颗恒星飞去。
祖布林发现,这种“彗星交换”事情或许是地球屡次物种大灭绝的始作俑者。
但从大范围来看,该现象其实有或许为生命供给了必定协助,协助它们跨越“太空之海”,从一座“小岛”迁移到另一座“小岛”上。
“曩昔35亿年来,也许正是这种机制把生命送到了地球上,也将地球生命送到了世界各处。
”祖布林表示,“只要简单外推一下,假定每个行星系都会发作这种事情,那么生命在银河系中也许十分遍及。
”
这一结论的计算依据十分简单直接,考虑了太阳邻近世界中的均匀恒星密度 约每立方光年0.003颗恒星、太阳相对该恒星域的运动速度 约每小时3.6万公里、以及银河系中的恒星构成情况 约75%为体积较小、光芒黯淡的红矮星。
祖布林还假定,其它行星系外围也泊有很多彗星,就像太阳系的奥尔特云相同。
奥尔特云的规划终究有多大,咱们还不清楚。
据预算,它的最外围到太阳的间隔介于3万至10万个天文单位之间 1个天文单位为地球到太阳之间的均匀间隔,约合1.5亿公里。
祖布林采用了一个较为保守的估计值,将奥尔特云的半径定为4万天文单位,然后用这一数据预算其它类型恒星的奥尔特云半径。
例如,红矮星外围的彗星盘绕半径或许约为2万天文单位。
现在还不清楚奥尔特云中终究有多少彗星。
祖布林采用了一个被频频提起的估测值:1万亿颗,密度约为每千立方天文单位4颗彗星。
祖布林的计算结果显示,只要间隔达到10天文单位以内,太阳的引力就能捕获另一颗恒星奥尔特云中的天体。
因此,每次太阳与其它恒星近间隔接触时,都或许有很多彗星被太阳捕获。
假定太阳来到了距另一颗恒星2万天文单位以内的当地,太阳就会在该恒星的奥尔特云中开凿出一条宽约2万天文单位的痕迹,或许会在此进程中捕获2.5万个天体 条件是假定其它恒星的奥尔特云密度也和太阳相同,同样为每1000立方天文单位4颗天体。
接下来,这些被太阳捕获的天体便会遭到太阳引力吸引,菜叶说说,飞向太阳系内部。
而太阳系奥尔特云中的部分天体也会被另一恒星捕获,朝相反方向飞去。
“由这些外来天体引发的冲击无疑将首要落到气体巨行星上。
”祖布林在今年六月宣布在《世界天体生物学期刊》上的研讨报告中写道,“但由于太阳每次都会捕获很多天体,地球这样的星球也或许遭到涉及。
”
恒星巨细不同,能够捕获的天体数量也不同,由于恒星引力巨细由质量决议。
例如,红矮星质量约为太阳的30%,就必须将间隔缩小到3天文单位以内,才能捕获其它恒星奥尔特云中的天体。
祖布林利用所有这些信息 还包括其它信息,计算出了恒星近间隔相遇的发作频率、以及相应的结果。
计算结果可谓适当惊人。
他发现,在曩昔的460亿年中,每隔10亿年,就会发作约47起恒星间的近间隔接触,其中约一半都有红矮星的参加。
这样算下来,适当于每隔2100万年,就会发作一次恒星相遇事情。
最终这个数字非常接近地球上物种大灭绝的周期——物种大灭绝似乎每隔2000万至4000万年就会发作一次。
科学家之前就曾提出,彗星碰击或许是形成这些物种逝世的元凶巨恶,并提出了能让彗星定期冲向地球的或许机制。
例如,一些研讨人员提出,太阳或许有一颗没有被咱们发现的伴星,名叫“涅墨西斯星”,每隔2600万年左右就会抵触一次奥尔特云。
还有人以为,这种不稳定因素是由银河系中的一片暗物质引起的,太阳或许会定期从这片暗物质中穿过,并受其影响。
但祖布林的研讨指出,来自外星系的彗星才是形成这些物种灭绝的首要原因。
他的计算还显示,太阳系会经过这种彗星“轰炸”,频频地与其它行星系交换物质。
例如,彗星碰击扬起的尘土能够在阳光的压力推动下,以每小时10.8万公里的时速向外飞翔,比两颗恒星近间隔交会时的相对速度还要快。
#p#分页标题#e#这意味着微生物也许能够借助这一进程,从太阳系跃迁到擦肩而过的另一行星系中。
并且这个进程发作得很快,在有害的深空辐射中的暴露程度有限。
生命或许从一个星球移动到另一个星球的理论名叫“泛种论”,有几种不同的版别。
如一些科学家以为,地球生命是由外星智慧生命有意‘播撒’的种子,这一概念名叫“引导性泛种论”。
“不仅如此,就算被喷射出的物质没能射中擦肩而过的行星系,也会被原行星的奥尔特云捕获。
”祖布林写道,“部分物质 如含有微生物的尘土颗粒在奥尔特云的冰冻环境中、以及有效的冰层维护下,能够储存很长时刻,直到下一次与另一个行星系相遇,再被释放出去、迁移到新的行星系中。
”
太阳的质量大于银河系中90%的恒星,因此咱们的奥尔特云规划在银河系中也居于前列。
这就意味着,咱们在与其它恒星相遇时大多处于主导地位,发往其它行星系的彗星比自己接收到的多三倍左右。
对天体生物学家、以及希望存在外星生命的人来说,这些研讨结果颇令人激动。
“银河系现已四处埋下了生命的种子,并且它们的来历或许就是地球。
”祖布林表示。
第一次观察到白矮星的X射线爆炸现象
这种死亡的太阳有时会在一次超热的爆炸中恢复活力并产生一个X射线辐射的火球。
来自包括图宾根大学在内的几个德国机构的一个研究小组在弗里德里希-亚历山大-纽伦堡大学(FAU)的领导下第一次观察到了这样一个X射线光的爆炸。
“这在某种程度上是一个幸运的巧合,真的,”来自FAU天文学机构的Ole König指出“这些X射线闪光只持续几个小时,几乎不可能预测,但观测仪器必须在准确的时间直接对准爆炸。
”他跟Jörn Wilms博士教授和来自马克斯-普朗克地外物理研究所、图宾根大学、巴塞罗那加泰罗尼亚理工大学和波茨坦莱布尼茨天体物理研究所的研究团队一起在《自然》上发表了一篇关于这次观测的文章。
这种情况下的仪器是eROSITA X射线望远镜,它目前位于离地球一百五十万公里的地方,自2019年以来一直在调查天空中的软X射线。
2020年7月7日,它在天空中的一个区域测量到了强烈的X射线辐射,而这个区域在4小时前是完全不显眼的。
四小时后,当X射线望远镜测量天空中的同一位置时辐射已经消失了。
由此可见,之前完全过度暴露在探测器中心的X射线闪光一定持续了不到8小时。
像这样的X射线爆炸在30多年前就被理论研究所预测,但直到现在还没有被直接观察到。
这些X射线的火球发生在太阳的表面,这些太阳在用完大部分由氢和后来在其核心深处的氦组成的燃料之前其大小跟太阳相仿。
这些太阳的尸体不断缩小,直到剩下白矮星,它们的大小跟地球相似,但其质量可能跟我们的太阳相似。
“想象这些比例的一种方法是把太阳想象成跟苹果一样大小,这意味着地球将跟针头一样大小并以10米的距离围绕苹果运行,”Jörn Wilms解释道。
来自图宾根大学的Victor Doroshenko博士补充称:“这些所谓的新星确实一直在发生,但在大多数X射线发射产生的最初时刻探测它们真的很难。
不仅闪光的持续时间短是一个挑战,而且发射的X射线的光谱非常软。
软X射线的能量不大,容易被星际介质吸收,所以我们在这个波段不能看得很远,这就限制了可观察的物体的数量--无论是新星还是普通的太阳。
望远镜通常被设计成对较硬的X射线最有效,因为那里的吸收不那么主要,而这正是它们会错过这样一个事件的真相!”Victor Doroshenko总结道。
另一方面,如果要把一个苹果缩小到针头大小,那么这个微小的颗粒将保留苹果相对较大的重量。
Jörn Wilms继续称:“来自白矮星内部的一茶匙物质很容易就具有跟一辆大卡车相同的质量。
由于这些烧毁的太阳重要由氧和碳组成,我们可以把它们比作在宇宙中漂浮的与地球同样大小的很大钻石。
这些珍贵宝石形式的物体温度很高,会发出白色的光芒。
然而这种辐射非常微弱,从地球上很难探测到。
除非白矮星伴随着一颗仍在燃烧的太阳,也就是说,当白矮星很大的引力从伴随的太阳外壳中吸引氢气时。
FAU的天体物理学家Jörn Wilms说道:“随着时间的推移,这些氢气可以在白矮星的表面聚集成一个只有几米厚的层。
”在这层中,很大的引力产生了很大的压力,这种压力非常大,以至于大到导致太阳重新点燃。
在一个连锁反应中,它很快就会发生很大的爆炸,期间氢气层被炸掉。
像这样的爆炸的X射线辐射就是2020年7月7日击中eROSITA探测器的真相,产生了一个过度曝光的图像。
“对来自白矮星大气层的X射线辐射的物理来源的理解相对较好,我们可以从第一原理和精致的详情中建立它们的光谱模型。
将模型跟观测结果进行比较可以了解这些物体的基本属性,如重量、大小或化学成分,”来自图宾根大学的Valery Suleimanov博士说道,“然而,在这种特殊情况下的问题是,在30年没有光子的情况下,我们突然有了太多的光子,这扭曲了eROSITA的光谱反应,eROSITA的设计则是为了探测数以百万计的非常微弱的天体,而不是一个但非常璀璨的物体”,Victor Doroshenko补充道。
Jörn Wilms则表示:“利用我们最初在支持X射线仪器开发时拟定的模型计算,我们能在一个复杂的过程中更详细地分析曝光过度的图像,从而获得一个白矮星或新星爆炸的幕后观点。
”根据这些结果,,这颗白矮星的质量大约相当于我们的太阳,因此相对较大。
爆炸产生了一个温度约为327,000摄氏度的火球,这使其温度为太阳的60倍。
“这些参数是通过将X射线辐射模型跟Valery Suleimanov和Victor Doroshenko在图宾根创建的非常热的白矮星所发出的辐射模型相结合,以及在FAU和MPE进行的远远超出规格的制度下对仪器反应的非常深入的分析而获得的。
我认为这很好地说明了现代科学中合作的主要性--以及德国eROSITA联盟中广泛的专业知识,”来自图宾根大学的Klaus Werner教授博士补充道。
由于这些新星很快就耗尽了燃料,它们会迅速冷却,X射线辐射则会变得更弱并直到最后变成可见光,其在eROSITA探测到的半天后到达地球并被光学望远镜观测到。
Ole König指出,随后出现了一颗看似璀璨的太阳,这实际上是来自爆炸的可见光且非常璀璨,以至于在夜空中可以用肉眼看到它,“像这样看似‘新星’的现象在过去也曾被观测到过。
由于这些新星只有在X射线闪光后才干看到,因此很难预测这种爆发,当它们撞上X射线探测器时重要是靠运气。
”
人类已经搜寻到5000颗系外行星?回顾一些里程碑式的发现
最近人类已经发现的第5000颗系外行星正式得到确认,现在似乎是回顾这一路走来的里程碑的最佳时机。
自从仰望夜空以来,人们一直认为至少在我们看到的一些太阳附近应该有行星在运行,但直到1992年,天文学家才确认第一次发现了一颗“太阳系外 ”行星。
虽然New Atlas没有报道早期的系外行星科学,但该媒体在2008年第一次报道该领域的发现:在大约5000光年外发现了一个"惊人的相似"的行宇宙岛统。
第二年,随着NASA(美国宇航局)开普勒宇宙望远镜的发射,事情才真正开始,该望远镜是专门为搜索系外行星而设计的。
在接下来的几年里,候选探测器开始成百上千地涌入,到2015年,天文学家已经确认了大约440个系统中的1000多颗系外行星。
七年后,这个数字现在已经增加到5000多颗。
其中的一些亮点包括Gliese 581g,第一颗可能适合居住的系外行星;HIP 13044 b,在银河系外发现的第一颗候选系外行星;第一次发现的“流氓行星。
Kelt-9b,比大多数太阳都要热的气体巨行星;Proxima b、c和d,它们是离地球最近的系外行星,只有4光年的距离;当然还有TRAPPIST-1系统,它包含七颗地球大小的行星,围绕一颗红矮星运行。
New Atlas总结了过去20年中一些最大的系外行星发现:2008年2月20日,圣安德鲁斯大学的天文学家有发现了一个距离地球大约 5000 光年的行宇宙岛统,它与我们的太阳系有着“惊人的相似之处”。
2010 年 10 月 1 日,天文学家宣布第一颗“潜在宜居”的系外行星Gliese 581g 被发现。
2010 年 11 月 25 日,天文学家称银河系以外的第一颗系外行星HIP 13044 b 被发现。
2011 年 9 月 19 日,美国宇航局的开普勒任务发现了第一颗围绕两颗太阳运行的系外行星 Kepler-16b。
2012 年 11 月 15 日,天文学家发现了一颗距离我们太阳系约 100 光年的“流氓行星”。
2015年1月10日,美国宇航局宣布开普勒宇宙望远镜观测到的系外行星数量已经超过了1000 颗,其中包括 8 颗新的“宜居”行星和 544 颗候选行星。
2016 年 8 月 24 日,一组天文学家发现了一颗潜在宜居行星,距离地球仅 4 光年。
2017 年 2 月 22 日,一个国际天文学家团队宣布在附近一颗超冷红矮星的轨道上发现了七颗地球大小的系外行星,其中三颗位于该太阳的宜居带。
2017 年 5 月 5 日,天文学家盘点迄今为止发现的五颗最奇异的系外行星。
2017 年 6 月 5 日,美国宇航局发现极度不适合居住的超高温系外行星KELT-9b。
2022年3月21日,美国宇航局确认发现了第5000 颗系外行星,,并认为还有数十亿颗系外行星有待发现。