在史前气候变化期间,洋流减弱导致北大西洋海洋生物的营养物质减少

【菜科解读】
佐治亚理工大学的研究人员已经完成了对史前主要洋流减弱如何导致海洋营养物质减少和对北大西洋海洋生物产生负面影响的调查。
这些结果支持了关于我们的海洋可能如何应对气候变化的预测,以及这对海洋生物意味着什么。
来源:uux.cn乔治亚理工大学/Jean Lynch Stieglitz
(神秘的地球uux.cn)据乔治亚理工学院:乔治亚理工学院的研究人员已经完成了对史前主要洋流减弱如何导致海洋营养物质减少和对北大西洋海洋生物产生负面影响的调查。
这些结果支持了关于我们的海洋可能如何应对气候变化的预测,以及这对海洋生物意味着什么。
北大西洋是生物活动的中心,这在很大程度上归功于提供丰富营养的墨西哥湾流。
科学家们推测,由于海洋环流的减弱,我们不断变化的气候可能会导致北大西洋营养物质和生物活动的减少,但这一理论此前仅得到模型的支持。
现在,通过研究埋藏在墨西哥湾流起源地的沉积物,该团队首次对近13000年前地球退出最后一个冰河时期时类似的气候导致的衰退的影响进行了同类调查。
这篇题为《年轻干旱气候逆转期间北大西洋营养流减少》的论文本周发表在《科学》杂志上。
由佐治亚理工大学地球与大气科学学院教授Jean Lynch Stieglitz领导的团队还包括Lynch Stiaglitz过去的学生:Tyler Vollmer、Shannon Valley和Eric Blackmon,以及Sifan Gu(交通大学海洋学院)和Thomas Marchito(科罗拉多大学博尔德分校)。
林奇·斯蒂格利茨说:“这项研究测试了一个以前只在理论和模型中探索过的概念。
”。
“大西洋的大规模翻转环流提供了北大西洋生物生产力的营养物质。
”
由于温室气体排放,洋流预计将在下个世纪继续减弱,研究人员预计北大西洋将获得越来越少的营养物质。
林奇·斯蒂格利茨解释道:“这一概念对海洋和渔业的未来健康具有现实意义。
”。
影响范围从鱼类数量的减少到可能影响海洋吸收的二氧化碳量。
她补充道:“地球过去经历的剧烈气候变化可以帮助我们了解地球系统的哪些部分容易受到变化的影响,并帮助我们评估有关持续气候变化影响的想法。
”。
佐治亚理工大学的研究人员已经完成了对史前主要洋流减弱如何导致海洋营养物质减少和对北大西洋海洋生物产生负面影响的调查。
这些结果支持了关于我们的海洋可能如何应对气候变化的预测,以及这对海洋生物意味着什么。
来源:uux.cn乔治亚理工大学/Jean Lynch Stieglitz
一个不太可能的谜
该团队研究了年轻的Dryas,这是大西洋环流减弱的最后一个冰河时代过渡时期的一段时间。
通过研究过去环流减弱时营养流的变化,研究人员希望更好地了解我们对当今海洋变暖的预期。
然而,该团队最初并没有考虑到这一目标——这项工作最初是一个本科生研究项目,有一个有趣的谜团。
埃里克·布莱克蒙当时是林奇·斯蒂格利茨实验室的学生,他对调查上一次冰河时期北大西洋一种浮游生物的消失感兴趣。
林奇·斯蒂格利茨回忆道:“这项研究的结果令人费解。
”。
研究小组决定使用一种很少使用的技术来更好地理解结果。
重建海水氧浓度的方法异常清晰地记录了海水中的氧浓度是如何随时间变化的。
林奇·斯蒂格利茨说:“我们的团队意识到,当与早期的海水化学重建相结合时,这项技术提供了有关营养物质输送到北大西洋的历史和机制的关键信息。
”。
“我们开始回答一个小问题,一路上发现我们的数据比我们预期的更广泛。
”
美丽的小贝壳
利用这项新技术,研究小组分析了佛罗里达海峡的沉积物层,佛罗里达海峡是佛罗里达群岛和古巴之间的一条狭窄通道,墨西哥湾和大西洋在这里交汇。
Lynch Stieglitz解释道,通过对这些层取芯并采集圆柱形样本,“堆积的沉积物层提供了现场的环境历史”。
在这个例子中,“我们观察了被称为有孔虫的单细胞生物的外壳是如何随时间变化的。
”因为有孔虫生活在海底,它们的外壳在每一层沉积物中积累,保存了重要的化学特征,可用于重建它们所居住的海洋的化学成分。
佐治亚理工大学的研究人员已经完成了对史前主要洋流减弱如何导致海洋营养物质减少和对北大西洋海洋生物产生负面影响的调查。
这些结果支持了关于我们的海洋可能如何应对气候变化的预测,以及这对海洋生物意味着什么。
来源:uux.cn乔治亚理工大学/Jean Lynch Stieglitz
林奇·斯蒂格利茨说:“用美丽的小贝壳可以如此详细地重建过去的海洋化学,这真是太神奇了。
”。
研究表明,在年轻的Dryas期间,随着翻转循环的减弱,墨西哥湾流中的营养物质减少,佛罗里达海峡的氧气量增加。
研究小组还发现,随着营养流的减少,北大西洋的生物生产力也在下降。
林奇·斯蒂格利茨说:“这项研究代表了基于碳同位素的过去氧气浓度替代物的重要发展。
”。
“记录非常清晰,溶解氧变化的幅度和时间在磷酸盐重建中得到了惊人的反映。
”
超越气候
除了这些关于海洋如何运作的发现之外,该团队对有孔虫的研究还提供了新的方法来了解营养物质是如何在海洋中循环的,以及我们如何对此进行研究。
这些了解地球海洋过去如何变化的窗口为测试模型提供了一个关键工具,使我们能够更好地预测我们的海洋及其提供的资源在未来如何应对气候变化。
林奇·斯蒂格利茨指出:“地球系统的物理变化会对海洋中的生命产生深远的影响。
”。
“气候变化不仅仅关乎气候。
”
火星这颗红色星球影响地球的气候和海洋
(图片来源:uux.cn/Robert Lea/美国国家航空航天局)(神秘的地球uux.cn)据美国太空网(Robert Lea):科学家们发现了地质证据,证明火星和地球之间的引力相互作用推动了240万年的深海环流和全球变暖循环。
火星与地球海洋和气候之间的惊人联系见证了深层洋流的兴衰,这与太阳能增加和气候变暖有关。
这项研究可能有助于揭示地质时间尺度上的气候变化是如何影响海洋循环的,而不是人类目前通过温室气体排放造成的气候变化。
研究小组成员表示,这些知识可以帮助研究人员在未来创建更好的气候模型。
追踪恐龙时代的海洋动力学由悉尼大学科学家Adriana Dutkiewicz领导的研究小组开始调查当地球气候变暖时,海底洋流是变得更加强劲还是更加缓慢。
为了做到这一点,Dutkiewicz和他的同事使用了半个世纪以来从全球数百个地点收集的科学钻探数据。
这些数据使他们能够了解过去50年来深海洋流的强度。
为了进一步追溯到大约6500万年前,几乎可以追溯到恐龙时代,他们研究了地球的深海沉积物记录。
这使他们能够检查地球轨道的变化是否与沉积变化有关。
该团队发现了240万年的周期,即“天文大周期”,与地球和火星的轨道有关。
Dutkiewicz说:“在我们的深海沉积数据中,我们惊讶地发现了这240万年的周期。
”。
“只有一种方法可以解释它们:它们与火星和地球绕太阳运行的相互作用循环有关。
”科学家们早就知道天文大周期,但很少在地球地质学中得到证明。
该研究的合著者、悉尼大学的Dietmar Müller解释了地球和火星的轨道如何导致海洋的变化。
他说:“太阳系中行星的重力场相互干扰,这种被称为共振的相互作用改变了行星离心率,这是衡量它们轨道接近圆形的指标。
”。
在地球上,这导致了我们的星球从太阳接收到更多辐射的时期,从而创造了更温暖的气候。
240万年的周期包含了深海记录的“突破”,这些突破表明了海洋环流更加活跃的时期。
该团队的研究结果表明,水的循环运动在海洋深处造成了小漩涡或“漩涡”,这是海洋变暖的一个重要因素。
这些涡流可能有助于抵消海洋停滞,许多科学家预测,随着大西洋经向翻转环流(AMOC)的减缓,海洋停滞将随之而来。
AMOC是一个巨大的洋流系统,将温暖的海水从热带输送到北大西洋。
它负责驱动墨西哥湾流并维持欧洲温暖的气候。
基于地球观测卫星数据的墨西哥湾流可视化。
(图片来源:uux.cn/哥白尼)穆勒说:“我们知道,至少有两种不同的机制有助于海洋深水混合的活力。
AMOC就是其中之一,但深海涡旋似乎在温暖气候中对保持海洋通风起着重要作用。
”。
“当然,就将水团从低纬度输送到高纬度以及从高纬度输送到低纬度而言,这不会产生与AMOC相同的效果。
”这些漩涡通常会到达深海海底,也被称为“深海海底”。
一旦连接到深海海底,这些巨大的漩涡可能会引起侵蚀,并形成大型的雪堆状沉积物,称为“等深岩”Dutkiewicz总结道:“我们跨越6500万年的深海数据表明,温暖的海洋有更强劲的深层环流。
”。
“即使AMOC速度减慢或完全停止,这也有可能防止海洋停滞。
”该团队还不知道地球和火星轨道及其产生的海洋动力学之间的相互作用如何影响未来地球海洋中的生命。
尽管如此,这些发现可能会带来更有力的气候建模和预测。
该团队的研究于周二(3月12日)发表在《自然通讯》杂志上。
每隔240万年火星引力场就会猛烈地撞击地球,从而改变海底
(图片来源:uux.cn/美国科学院/科学图片库,盖蒂图片社)(神秘的地球uux.cn)据美国生活科学网站(艾米丽·库克):新的研究表明,火星对地球的引力可能正在影响我们星球上的气候。
从世界各地数百个地点获得的地质证据可以追溯到6500多万年前,表明深海洋流反复经历过增强或减弱的时期。
这种情况每240万年发生一次,被称为“天文大周期”更强的洋流,被称为“巨大漩涡”或漩涡,可能会到达海洋最深处的海底,即深渊。
根据周二(3月12日)发表在《自然通讯》杂志上的研究,这些强大的洋流会侵蚀掉在周期平静时期积累的大块沉积物。
研究发现,当地球和火星围绕太阳运行时,这些周期恰好与已知的地球和火星之间引力相互作用的时间相吻合。
研究合著者、悉尼大学地球物理学教授Dietmar Müller在一份