斯皮策宇宙望远镜发现新生太阳以惊人速度进食?并通过频繁进食成长

最近的一项
【菜科解读】
用红外光拍摄的宇宙望远镜图像揭示了原来不为人知的详情,如猎户座星云中的太阳形成区的这张图像。
最近的一项研究依靠红外线数据追踪了小太阳的频繁爆发,因为它们从周围的气体和尘埃盘中收集质量。
资料来源:ESA/美国宇航局/JPL-Caltech
(神奇的地球uux.cn)据cnBeta:最年轻的太阳在消耗周围星盘的物质时,经常会发出璀璨的闪光。
最近对NASA退役的斯皮策宇宙望远镜的数据分析显示,新生的太阳以惊人的速度"进食",并通过令人惊讶的频繁进食狂潮而成长。
分析发现,处于最早发育阶段的太阳婴儿的爆发--当它们大约有10万年古代,或者相当于一个7小时大的婴儿--大约每400年发生一次。
这些亮度的爆发是进食的迹象,因为年轻的、成长中的太阳从它们周围的气体和灰尘盘中吞噬物质。
托莱多大学的天文学家Tom Megeath说:"当你在观察太阳的形成时,气体云会坍塌以形成一颗太阳。
这简直就是实时的太阳制造过程"。
Megeath是这项研究的共同作者,这项研究今年早些时候发表在《天体物理学杂志》上,由沙特阿拉伯贾赞大学的教授Wafa Zakri领导。
这代表着在了解太阳的形成期方面向前迈出了一大步。
到目前为止,最年轻的太阳的形成和早期进展一直是研究的难点,因为它们大多被隐藏在形成它们的云层中,无法看到。
这些年轻的太阳年龄不到10万年,被称为"0级原星"--被包裹在厚厚的气体包裹中,它们的爆发尤其难以用地面望远镜观察到。
首次这样的爆发是在近一个世纪前发现的,此后它们就很少被看到了。
但是,斯皮策在2020年结束了它在轨道上16年的观测,在红外线中观察宇宙,超出了人类眼睛所能看到的范围。
这一点,以及它长时间的凝视,使斯皮策能够看穿气体和尘埃云,并从依偎在里面的太阳那里捕捉到这种亮斑。
研究小组搜索了2004年至2017年期间猎户座太阳形成云层中的斯皮策数据,这是一次足够长的"凝视",以捕捉正在爆发的小太阳。
在92颗已知的0级原星中,他们发现了三颗--其中两颗的爆发是以前未知的。
数据显示,最年轻的婴儿星的爆发率大约为每400年一次,比从猎户座的227颗较老的原生星测得的爆发率要频繁得多。
他们还将斯皮策的数据与其他望远镜的数据进行了比较,包括天基广域红外巡天探测器(WISE)、现已退役的欧空局(European Space Agency)赫歇尔宇宙望远镜,以及现已退役的空中平流层红外天文台(SOFIA)。
这使他们能够估计出这种爆发通常持续15年左右。
一颗婴儿太阳的一半或更多的体积是在早期的0级时期增加的。
Megeath说:"按照宇宙的标准,太阳在非常年轻的时候生长迅速。
这些年轻的太阳拥有最频繁的爆发是说得通的"。
新的发现将帮助天文学家更好地了解太阳是怎么形成和积累质量的,以及这些早期的质量消耗可能会影响后来的行星形成。
他说:"它们周围的盘子都是行星形成的原材料,爆发实际上可以影响这些材料,也许会引发分子、颗粒和晶体的出现,它们可以粘在一起,形成更大的结构。
甚至有可能,我们自己的太阳曾经是这些打嗝的婴儿之一。
"太阳比大多数太阳要大一些,但是没有理由认为它没有经历过这种爆发式成长的过程。
它可能做到了。
当我们见证了太阳的形成过程,它是了解我们自己的太阳系在46亿年前的一个窗口。
"
一种降低在月球上丢失太阳能漫游车风险的新方法
大多数用于太阳能供电的长距离导线规划算法没有主动考虑可能的导航延迟。
在这里,虚白色路径显示了一个计划,该计划将PSR内的漫游车尽快引向阳光,但它对可能的延迟没有弹性,这种延迟将导致漫游车落后于计划,并错过关键的太阳能充电事件。
另一方面,主动考虑延迟 蓝线的规划策略将使漫游车走上潜在的更长但更安全的轨迹。
鸣谢:uux.cn/背景图像和蝰蛇漫游者渲染:美国宇航局和亚利桑那州立大学。
据美国物理学家组织网(英格丽德·法德利):美国宇航局和世界各地的其他太空机构定期向太空发送机器人和自动飞行器,以探索太阳系中的行星和其他天体。
这些任务可以大大提高我们对太阳系其他地方的环境和资源的了解。
多伦多大学航空航天研究所和美国宇航局喷气推进实验室 JPL的研究人员最近进行了一项研究,探索可以提高使用太阳能漫游车进行月球探索的有效性和成功率的回收策略。
他们的论文预先发表在arXiv上,介绍了一种新的方法,可以帮助太阳能漫游车安全地离开月球上永久的阴影区域。
领导这项研究的研究员Opvier Lamarre告诉Phys.org:近年来,几个国家已经表示对探索月球南极感兴趣,包括美国、中国、印度、俄国和其他国家。
。
他们中的大多数人计划使用太阳能漫游车来探索经常处于阴影中的区域 称为永久阴影区,或PSRs,我们怀疑这些区域可能包含大量的水冰。
可以想象,用太阳能漫游车进入PSR是一项冒险的尝试!如果漫游车因故障而延迟,它可能无法在能量耗尽前回到阳光中。
太阳能漫游车在能效方面有许多优势,但它们受到依赖太阳光运行的限制。
由于月球上的一些区域永久处于阴影中,漫游者对阳光的依赖可能会阻止他们安全地探索然后离开这些区域,导致他们在执行任务时耗尽能量。
拉马尔和他的同事最近工作的一个关键目标是量化失去太阳能漫游车的概率,因为他们正在探索月球上的这些阴影区域。
此外,该小组希望设计一种方法,帮助最大限度地提高太阳能漫游车安全完成任务的概率。
首先,我们需要定义太阳能漫游车在月球南极‘安全’意味着什么,拉马尔解释道。
为了做到这一点,我们关注漫游车在什么地方、什么时间离开PSR,以及它的电池还剩多少能量。
这表明了漫游车在下一段任务之前是否可以在原地冬眠 因此,在那之前保持安全。
然后,我们计算一种在线遍历规划方法,漫游车可以从任何起始状态 包括PSRs内部开始遵循该方法,以最大化其生存概率。
拉马尔及其同事概述的规划方法被称为恢复政策,因为它本质上是一种后备策略,允许漫游车最大限度地增加到达安全的机会 即阳光将到达的区域,为其电池充电。
在他们的论文中,研究人员表明,在这种情况下计算这种复苏政策可能具有挑战性,因为它需要几个近似值,如果非常不正确,可能会影响整体预测的可靠性。
例如,时间是我们状态空间的连续维度,需要离散化,拉马尔说。
我们需要确保这种近似/离散化不会危险地扭曲对故障概率的预测。
在月球南极,太阳光照是高度动态的;附近的山脉和环形山可能会在地表投下巨大的阴影。
如果与 近似政策假设相比,漫游者稍微落后于计划,它可能会错过关键的太阳能充电期。
如果比政策设想的提前一点,也是如此。
由于这些时间近似值极大地影响了太阳能漫游车回收政策的可靠性,拉马尔和他的同事们保持了高度保守。
这最终将失败的风险降至最低,同时增加了该策略在现实任务中保持安全的可能性。
我们认为这种方法在许多方面都是有用的,拉马尔说。
首先,它代表着向远程自主移动规划算法迈出了一步,该算法主动考虑 或‘推理’太阳能漫游车的风险。
此外,我们的技术可以成为人类操作员在月球南极制定新的月球车任务的有用工具 它可以用于着陆点选择、全球遍历规划和风险预测等,甚至可以通过地面回路操作支持正在进行的任务。
在未来,这个研究小组引入的回收政策可以应用于月球上的真实世界探索任务,以降低在阴影区域丢失太阳能漫游车的风险。
由于最近的研究是与美国宇航局的JPL合作进行的,这种方法很快就可以在各种现实的月球场景中进行测试。
到目前为止,我们使用Cabeus环形山的轨道数据测试了我们的方法,但我们希望使用美国宇航局定制的太阳照明地图,并将我们的技术应用于月球南极的许多其他区域,这些区域有一天将被机器人或载人任务访问,如Shackleton,Faustini,Nobile,Haworth和Shoemaker环形山,Lamarre补充道。
此外,我们目前正在研究新一代风险预测远程导航算法,用于利用太阳能漫游车探索月球南极。
月球,太阳系中第五大行星地球卫星
例如在我们民间最有名是嫦娥奔月,这个神话故事一直流芳百世。
许多科学家一直在探索其中奥秘,,最终在1969年时候宇航员终于登上了月亮,开启了对外空世界新的探索篇章。
月球简介图片中就是我们地球的卫星,这是太阳系中第五大行星。
月球直径是地球的四分之一,质量是地球的八十一分之一,距离地球有38万千米,其质量在太阳系中最大,对于月球形成,一些科学家推测可能是在45亿年前。
在月球表面有阴暗和明亮区域,亮区是高地,称为月陆;暗区是平原,称为月海。
月球的表面被巨大的玄武岩层所覆盖,除了玄武岩构造,月球的阴暗区,还存在其他火山特征。
大部分月球火山的年龄在30-40亿年之间;典型的阴暗区平原,年龄为35亿年;最年轻的月球火山也有1亿年的历史。
月食现象是指当月球行至地球的阴影后时,太阳光被地球遮住。
月食现象可分为月偏食、月全食两种,当月球只有部分进入地球的本影时,就会出现月偏食;而当整个月球进入地球的本影之时,就会出现月全食。
人类登月在1969年7月时候,美国阿波罗载着三位宇航员成功登上了月球,这是人类历史上首次出现。
直到今天,月球上一共插上了6面美国国旗。
据有关报道,在美国登陆月球之后看到了外星人的采矿器和一些外星飞船。
在2013年中国嫦娥三号机器人首次登陆了月球,圆了国人多年的探月梦。
接下来重点就是嫦娥四号选择是难度极大的月球背面登陆,希望中国嫦娥四号能成功发射,能成功着陆月球背面,成功向地球人类送回珍贵的月球数据。