木星是个气态行星,为啥不会被猛烈的太阳风吹散呢?

作者:小菜 更新时间:2025-04-25 点击数:
简介:有人提问:在宇宙中,气态星球为什么不会被太阳风吹散? 我也可以反问一句,为什么会被太阳风吹散? 大家可能对太阳风不了解,更多看到的是太阳风速度很快,每秒可以达到900千米,最慢的也有200km/s。

这是骇人的速度,这如果搁在地球上,肯定把地壳都掀掉了,露出地壳下面的岩浆,然后岩浆也被吹散了,成为太空一块块小行星碎片。

要知道地球上12级台

【菜科解读】

木星是个气态行星,为啥不会被猛烈的太阳风吹散呢?

有人提问:在宇宙中,气态星球为什么不会被太阳风吹散?

我也可以反问一句,为什么会被太阳风吹散?

大家可能对太阳风不了解,更多看到的是太阳风速度很快,每秒可以达到900千米,最慢的也有200km/s。

这是骇人的速度,这如果搁在地球上,肯定把地壳都掀掉了,露出地壳下面的岩浆,然后岩浆也被吹散了,成为太空一块块小行星碎片。

要知道地球上12级台风的风速才不过每秒30来米,而人类设置的顶级17级飓风也才每秒60来米,时速也才200多点千米。

这点速度在太阳风面前,说小巫见大巫还是高看了很多,因为太阳风速是地球风速的数万倍。

木星是个气态行星,为啥不会被猛烈的太阳风吹散呢?

但我们不能用地球上的风来想象太阳风。

太阳风是什么?它就是太阳辐射出来的带电粒子,这些带电粒子不像地球风由大气分子组成,而是比原子还小的粒子~电子或质子组成。

这些带电粒子从太阳日冕层释放到太空,是一种等离子体,携带着能量,是太阳能量的强劲外溢。

这些带电粒子在太阳周围比较密集,因此可以烤焦气化一切,但随着在太空真空旅行,就渐渐被稀释了,到达我们地球时,已经很稀薄了,每立方厘米只有几个到几十个粒子。

这是一种什么样的稀薄状态呢?可以说人类除了在太空实验室能够制造出这种极度真空,在地球上最高度的真空,也就是在欧洲大型强子对撞机里,制造的真空也达到每立方厘米上千个大气分子,而被视为高度真空的电视机显像管里,每立方厘米有几百亿个大气分子存在。

月球被视为没有大气的星球,呈现出高度真空状态,但月表每立方厘米也有上万个气体分子。

科学研究认为在距离地球63万千米的高空,已经大大超出了地月之间的距离,每立方厘米还有数百个气体分子。

也就是说,这些地方虽然高度真空,也比太阳风粒子密度要高出很多。

木星是个气态行星,为啥不会被猛烈的太阳风吹散呢?

地球风的密度是多少呢?

地球海平面大气,每立方厘米的气体分子达到约2700亿亿个。

这下明白了吧,地球的风是在吹动每立方厘米2700亿亿个气体分子运动,而太阳风只是每立方厘米几个到几十个比原子还小的粒子在运动,密度只是地球大气的几百亿亿分之一,这种比高度真空还要真空的状态,当然就掀不起什么波澜了。

我们可以这样理解,实际上所谓的太阳风吹过来的强度,比地球高度真空吹过来还要弱很多。

因此这种太阳风几乎空无一物,如果你漂浮在太空真空中,迎着每秒900千米的太阳风,你的一根毛也不会掀起,根本感受不到。

所以说太阳风要吹走大气有点像蚍蜉撼树。

木星是个气态行星,为啥不会被猛烈的太阳风吹散呢?

但太阳风的危害还是很大的,还会伤人。

这是因为太阳风是高能带电粒子,它们掠过地球时,会引起地球磁暴、电离层暴,影响电波通讯,特别是短波。

有时候还会对地面管网,如输电、输油、输气管线等造成安全事故,对运行的卫星安全也有影响。

太阳风高能带电粒子辐射到地表,还会对人及生物造成伤害,主要是增加生物的辐射量,就像照射了多次X射线,使人体免疫力下降,发生病变,情绪波动,甚至车祸增加等。

磁场对地球有很好的保护作用,它们来到地球后,地球的磁场就起作用了,因为这些粒子是带电的,磁场就可以把它们偏转,顺着磁力线划过地球,走向更深的太空了。

有少量的漏网太阳带电粒子,就会在两极磁力线发生和进入处这个薄弱点侵入,与地球大气发生碰撞,被大气里的分子粒子与它们在战斗中消耗掉了,作战的证据就是绚丽的极光。

在南北极,人们看到的极光于绚丽越多,就说明太阳风也猛烈,入侵的带电粒子越多。

#p#分页标题#e#

木星是个气态行星,为啥不会被猛烈的太阳风吹散呢?

那么木星大气到底会被太阳风吹散吗?

一颗行星能不能圈住大气,有多方面原因。

首先大气是受行星自身引力影响的,引力越大,越能够拉拽住大气;其次与恒星距离有关,距离越近,大气分子被加热的越高,如果气体分子热运动高出行星逃逸速度,大气就会不断丧失;第三,行星磁场的强弱,对屏蔽或减轻太阳风对星体的侵袭至关重要。

我们来看看木星。

木星引力约地球的2.5倍,完全有能力锁住大气;木星距离太阳比地球要远5倍多,顶层大气温度只有-148℃,比地球要低很多,而且太阳风比地球稀薄了很多;木星磁场是地球的14倍,是太阳系行星中磁场最强的,能够很好抵御太阳风的侵袭。

这些条件使木星大气完全能够保持住。

虽然如此,木星的大气并不是一点都不变动,由于种种原因,如天体撞击等,可能会逃逸一些,也可能会再捕获一些,这么一点点量与木星大气的总量相比完全可以忽略不计。

在太阳系的混乱时代,木星可能帮助形成了地球的月球

迁移的木星是否散射了小行星,并导致了形成地球卫星的碰撞?(图片uux.cn美国国家航空航天局)据美国太空网(Keith Cooper):看起来,所谓的大不稳定事件发生在太阳系诞生后的6000万至1亿年之间,它在行星之间造成了混乱,使气态巨星在太空中倾斜,直到它们进入我们今天所知的轨道。

这是一些仔细的科学探测工作的结论,这些工作将一种陨石与一颗曾经被这些掠夺行星推来推去的小行星联系起来。

此外,科学家们认为,迁徙的行星——主要是木星——可能会破坏火星大小的原行星Theia的轨道稳定,从而导致地球月球的形成。

这种不稳定可能引发了与地球的碰撞,将碎片送入太空。

科学家们认为,正是这些碎片形成了月球。

由于对各种类型小行星和彗星的组成和位置的研究,科学家们知道上述大屠杀发生在太阳系历史的早期。

尽管如此,当谈到一切到底是如何发生的时,仍有一些谜题有待解决。

例如,科学家们意识到,我们今天看到的太阳系中的物体,包括地球,是由气体和尘埃盘围绕太阳形成的。

然而,其中一些天体,即小行星和彗星,似乎由盘中不存在的物质组成——至少,这些物质不应该存在于这些天体目前所在的位置。

相反,这些天体在被散射到更远的地方之前,在离太阳更近的地方形成会更有意义。

如果木星和其他巨型行星从它们形成的地方迁移过来,也许小行星和彗星也会迁移过来。

在年轻的太阳系中,木星、土星、天王星和海王星这四颗气态巨行星靠得更近。

随着时间的推移,与海王星以外的星子的引力相互作用导致土星、天王星和海王星向外迁移。

与此同时,木星向内迁移,科学家认为它反过来能够破坏太阳系内部天体的稳定。

莱斯特大学的行星科学家Chrysa Avdellidou告诉Space.com:这种轨道不稳定的想法现在在行星界已经确立,但这种不稳定发生的时间仍然是一个有争议的问题。

科学家们将这种轨道不稳定性背后的理论称为尼斯模型,以法国蔚蓝海岸天文台所在的城市命名,科学家们最初就是在这里提出这一想法的。

最初,这些科学家认为这种不稳定性发生在太阳系诞生后5亿至8亿年之间。

如果这是真的,那将与一场被称为晚期重轰炸的事件相吻合,在这场事件中,由于气态巨星的迁移,内行星将被从轨道上脱落的彗星击中。

然而,有证据反对晚期重轰炸的概念,科学家们现在认为,不稳定发生在太阳系形成后不晚于1亿年,这是基于木星可能在L4和L5拉格朗日点积累特洛伊小行星的时间。

科罗拉多州博尔德市西南研究所的凯文·沃尔什告诉Space.com:人们似乎一致认为,尼斯模型式的不稳定可能发生在太阳系诞生后不到1亿年,但一些不同的阵营正在出现。

另一个阵营认为它发生在大约6000万年后的晚些时候。

因此,Avdellidou在沃尔什和其他行星科学家的帮助下,开始寻找答案。

该团队专注于一种名为EL顽火辉石球粒陨石的陨石,它的铁丰度较低,在成分和同位素比例上与形成地球的物质非常相似。

这告诉科学家,地球和EL球粒陨石可能是由行星形成盘的同一部分凝结而成。

然而,EL球粒陨石母体似乎不再靠近地球。

事实上,地面望远镜的天文观测已经将这些陨石与阿索尔小行星家族联系起来,后者在火星和木星之间的小行星带中发现。

就上下文而言,阿索尔家族和EL球粒陨石曾经是一颗大小行星的一部分,这颗小行星在大约30亿年前的一次碰撞中被粉碎,这一事件与巨大的不稳定性无关。

研究小组表示,应该有什么东西将阿索尔家族的祖先分散到小行星带中,而某种东西一定是导致木星漂移的不稳定因素。

因此,EL球粒陨石是这一事件的完美计时器,因为它们应该包含一定发生了什么的清晰记录。

沃尔什说:具体来说,EL陨石的热历史告诉了一个丰富的故事,既限制了原始母体的大小,也限制了它在破碎前冷却的时间。

通过动力学模拟,Avdellidou的团队能够对木星迁移的不同场景进行建模,并得出结论,木星可能早在太阳系诞生6000万年后就将阿索尔祖星散射到了小行星中。

再加上木星特洛伊小行星的数据,科学家们现在可以说,这种巨大的不稳定发生在6000万至1亿年之间。

沃尔什说:Avdellidou特别发现,尼斯模型本身——这颗巨行星的轨道在短短的1000万年或2000万年内失控——是将小行星送入这一特定的阿索尔小行星家族区域的最佳时机,也许也是唯一的时机。

有趣的是,形成月球的地球和忒伊亚之间的碰撞发生在这段时间左右。

Avdellidou说:我们知道Theia在原地球上发生了一次巨大的碰撞,其成分非常相似。

根据对(月球)样本的研究,有年龄估计,而其他同事已经表明,这次碰撞可能是这颗巨行星不稳定的结果。

尽管没有办法证明这一点。

Avdellidou说:当我们处理45亿年前的事件时,‘防止’是一个强有力的说法,也是一件困难的事情。

尽管这位科学家承认,形成地球月球的碰撞似乎与巨大的不稳定相吻合。

Avdellidou说:我们的研究将这些事件安排在一个很好的、紧凑的时间框架内。

虽然可能无法最终证明木星参与了月球的形成,但这些证据无疑具有启发性。

所以,下次你抬头看我们夜空中月亮的银色表面时,把它想象成早期太阳系的遗产,当时木星在它周围肆虐。

这一发现于4月16日发表在《科学》杂志上,并在维也纳举行的欧洲地质联盟大会上发表。

1月25日月球在夜空中与太阳系最大的行星

    1月25日星期三,当月亮和木星在夜空中相遇时,地球上空的夜空插图。

(图片来源:星夜软件)    周三(1月25日)从纽约市看到的夜空插图,在美国东部时间晚上7:49左右(格林威治标准时间1月26日0049)朝西南。

(图片来源:TheSkyLive.com)  据美国太空网(作者:罗伯特·李):周三(1月25日),月球将在夜空中与太阳系最大的行星木星相遇。

这两个天体将在天空**享相同的右赤经,天文学家称之为“合相”。

同时,月球和木星也会近距离接近,技术上称为脉冲。

  根据天空,5天大的新月将在合相期间经过木星以南不到2度,而这两个物体将在双鱼座。

月球的星等为-11.2,木星为-2.2,负前缀表示地球上空特别明亮的物体。

  从纽约市出发,月球和木星之间的合相及其近距离接近将于美国东部时间晚上7:49左右(格林威治标准时间1月26日0049)可见,两个物体将于美国东部时间晚上10:00左右(格林威治标准时间1月26日0300)落下。

  在合相期间,月球和木星仍然相距太远,无法用望远镜看到,尽管它们看起来离肉眼很近。

然而,可以用双筒望远镜观察到合相,在良好的观察条件下,观察者应该能够在没有任何光学辅助的情况下看到这种排列。

  木星并不是唯一一颗与月球有规律合相的太阳系行星。

由于月球沿着天空中一条称为黄道的假想线快速移动,该线将它带过星座,因此月球与太阳系行星的合相大约每月发生一次。

  太阳系的行星沿着黄道移动得要慢得多,这意味着行星之间的合相虽然确实发生了,但要少得多。

  例如,大合相是木星与其气态巨行星土星之间的合相,大约每20年发生一次。

在大合相期间,木星在其轨道上超过土星。

  更罕见的是天王星和海王星之间的合相,分别需要84年和165年才能完成一次穿越星座的旅行。

这意味着两颗行星之间的合相每171年只发生一次。

  木星的下一次行星合相是在2023年3月2日与金星。

在此之前,月球将在2023年1月31日的合相中与火星相遇。

加入收藏
               

木星是个气态行星,为啥不会被猛烈的太阳风吹散呢?

点击下载文档

格式为doc格式

  • 账号登录
社交账号登录