帕克太阳探测器,帕克太阳探测器进展

帕克是人类有史以来第一枚进入太阳日冕层——也就是太阳外层大气的探测器。
它发回的数据表明,太阳大气层中的怪事还真不少——而且越靠近太阳,怪事就越多。
帕克探测器首次近距离飞掠太阳时拍摄的照片。
NASA帕克到目前为止已经环绕太阳飞行了两周,到达过距离太阳只有0.25个天文单位的地方
【菜科解读】
2018年8月12日升空的帕克探测器其任务是近距离探测太阳。
帕克是人类有史以来第一枚进入太阳日冕层——也就是太阳外层大气的探测器。
它发回的数据表明,太阳大气层中的怪事还真不少——而且越靠近太阳,怪事就越多。
帕克探测器首次近距离飞掠太阳时拍摄的照片。
NASA帕克到目前为止已经环绕太阳飞行了两周,到达过距离太阳只有0.25个天文单位的地方,穿越了太阳风的发源地——日冕。
天文学家发现,帕克看到的日冕和我们从地球上看到的日冕有很大不同,比我们原本以为的更活跃。
帕克探测器拍摄的照片。
亮点是水星,黑点是后期照片较准时留下的痕迹,不是UFO……NASA太阳风是受太阳磁场驱动离开日冕层的,这一点没错。
但是帕克发现,太阳磁场对太阳风的驱动效果,实际上要比天文学家估计的强10至20倍。
这表明研究人员必须对太阳风暴的预测方式进行重新评估,而这对于保障地球及宇航员的安全至关重要。
帕克首次直接观测到自旋的太阳风。
由于太阳在自转,因此在靠近太阳表面的地方,太阳风实际上是在随太阳自旋的。
帕克发现,在距离太阳表面320万千米的地方,太阳风仍处于自旋中;而且越靠近太阳,其自旋的速度就越快。
在第一次靠近太阳期间,帕克所侦测到的太阳风自旋速度比理论预测值高出了近10倍。
帕克还为解开日冕层温度逆增之谜提供了新的线索。
太阳日冕中有一个非常奇怪的现象,即离太阳表面越远,日冕的温度反而越高。
天文学家相信这其中的部分原因可能与之前在太阳风中发现的阿尔芬波——一种沿磁场方向传播的特殊低频电磁波有关。
帕克发现,在靠近太阳的地方,存在着异常的阿尔芬波。
这种异常阿尔芬波所携带的能量要比正常阿尔芬波高出四倍,它们在等离子体内的传播速度可以高达48万千米/小时,它们实际上改变了磁场的方向。
帕克还将继续环绕太阳飞行,一点点靠近太阳,直到抵达距离太阳表面只有616万千米的地方。
太阳是唯一一颗可供人类近距离研究的恒星,因此从太阳身上得到的所有信息,对于我们理解恒星,乃至理解宇宙都极其珍贵。
帕克飞过的轨迹。
绿色的是升空时和当前的轨道,红色的是未来的轨道。
NASA参考:Probing the energetic particle environment near the Sunhttps://www.nature.com/articles/s41586-019-1811-1Highly structured slow solar wind emerging from an equatorial coronal holehttps://www.nature.com/articles/s41586-019-1818-7Alfvénic velocity spikes and rotational flows in the near-Sun solar windhttps://www.nature.com/articles/s41586-019-1813-zNear-Sun observations of an F-corona decrease and K-corona fine structurehttps://www.nature.com/articles/s41586-019-1807-xWhere is Parker Solar Probe?#Where-Is-PSP
声明:本文内容仅代表作者个人观点,与本站立场无关。
一种降低在月球上丢失太阳能漫游车风险的新方法
大多数用于太阳能供电的长距离导线规划算法没有主动考虑可能的导航延迟。
在这里,虚白色路径显示了一个计划,该计划将PSR内的漫游车尽快引向阳光,但它对可能的延迟没有弹性,这种延迟将导致漫游车落后于计划,并错过关键的太阳能充电事件。
另一方面,主动考虑延迟 蓝线的规划策略将使漫游车走上潜在的更长但更安全的轨迹。
鸣谢:uux.cn/背景图像和蝰蛇漫游者渲染:美国宇航局和亚利桑那州立大学。
据美国物理学家组织网(英格丽德·法德利):美国宇航局和世界各地的其他太空机构定期向太空发送机器人和自动飞行器,以探索太阳系中的行星和其他天体。
这些任务可以大大提高我们对太阳系其他地方的环境和资源的了解。
多伦多大学航空航天研究所和美国宇航局喷气推进实验室 JPL的研究人员最近进行了一项研究,探索可以提高使用太阳能漫游车进行月球探索的有效性和成功率的回收策略。
他们的论文预先发表在arXiv上,介绍了一种新的方法,可以帮助太阳能漫游车安全地离开月球上永久的阴影区域。
领导这项研究的研究员Opvier Lamarre告诉Phys.org:近年来,几个国家已经表示对探索月球南极感兴趣,包括美国、中国、印度、俄国和其他国家。
。
他们中的大多数人计划使用太阳能漫游车来探索经常处于阴影中的区域 称为永久阴影区,或PSRs,我们怀疑这些区域可能包含大量的水冰。
可以想象,用太阳能漫游车进入PSR是一项冒险的尝试!如果漫游车因故障而延迟,它可能无法在能量耗尽前回到阳光中。
太阳能漫游车在能效方面有许多优势,但它们受到依赖太阳光运行的限制。
由于月球上的一些区域永久处于阴影中,漫游者对阳光的依赖可能会阻止他们安全地探索然后离开这些区域,导致他们在执行任务时耗尽能量。
拉马尔和他的同事最近工作的一个关键目标是量化失去太阳能漫游车的概率,因为他们正在探索月球上的这些阴影区域。
此外,该小组希望设计一种方法,帮助最大限度地提高太阳能漫游车安全完成任务的概率。
首先,我们需要定义太阳能漫游车在月球南极‘安全’意味着什么,拉马尔解释道。
为了做到这一点,我们关注漫游车在什么地方、什么时间离开PSR,以及它的电池还剩多少能量。
这表明了漫游车在下一段任务之前是否可以在原地冬眠 因此,在那之前保持安全。
然后,我们计算一种在线遍历规划方法,漫游车可以从任何起始状态 包括PSRs内部开始遵循该方法,以最大化其生存概率。
拉马尔及其同事概述的规划方法被称为恢复政策,因为它本质上是一种后备策略,允许漫游车最大限度地增加到达安全的机会 即阳光将到达的区域,为其电池充电。
在他们的论文中,研究人员表明,在这种情况下计算这种复苏政策可能具有挑战性,因为它需要几个近似值,如果非常不正确,可能会影响整体预测的可靠性。
例如,时间是我们状态空间的连续维度,需要离散化,拉马尔说。
我们需要确保这种近似/离散化不会危险地扭曲对故障概率的预测。
在月球南极,太阳光照是高度动态的;附近的山脉和环形山可能会在地表投下巨大的阴影。
如果与 近似政策假设相比,漫游者稍微落后于计划,它可能会错过关键的太阳能充电期。
如果比政策设想的提前一点,也是如此。
由于这些时间近似值极大地影响了太阳能漫游车回收政策的可靠性,拉马尔和他的同事们保持了高度保守。
这最终将失败的风险降至最低,同时增加了该策略在现实任务中保持安全的可能性。
我们认为这种方法在许多方面都是有用的,拉马尔说。
首先,它代表着向远程自主移动规划算法迈出了一步,该算法主动考虑 或‘推理’太阳能漫游车的风险。
此外,我们的技术可以成为人类操作员在月球南极制定新的月球车任务的有用工具 它可以用于着陆点选择、全球遍历规划和风险预测等,甚至可以通过地面回路操作支持正在进行的任务。
在未来,这个研究小组引入的回收政策可以应用于月球上的真实世界探索任务,以降低在阴影区域丢失太阳能漫游车的风险。
由于最近的研究是与美国宇航局的JPL合作进行的,这种方法很快就可以在各种现实的月球场景中进行测试。
到目前为止,我们使用Cabeus环形山的轨道数据测试了我们的方法,但我们希望使用美国宇航局定制的太阳照明地图,并将我们的技术应用于月球南极的许多其他区域,这些区域有一天将被机器人或载人任务访问,如Shackleton,Faustini,Nobile,Haworth和Shoemaker环形山,Lamarre补充道。
此外,我们目前正在研究新一代风险预测远程导航算法,用于利用太阳能漫游车探索月球南极。
月球,太阳系中第五大行星地球卫星
例如在我们民间最有名是嫦娥奔月,这个神话故事一直流芳百世。
许多科学家一直在探索其中奥秘,,最终在1969年时候宇航员终于登上了月亮,开启了对外空世界新的探索篇章。
月球简介图片中就是我们地球的卫星,这是太阳系中第五大行星。
月球直径是地球的四分之一,质量是地球的八十一分之一,距离地球有38万千米,其质量在太阳系中最大,对于月球形成,一些科学家推测可能是在45亿年前。
在月球表面有阴暗和明亮区域,亮区是高地,称为月陆;暗区是平原,称为月海。
月球的表面被巨大的玄武岩层所覆盖,除了玄武岩构造,月球的阴暗区,还存在其他火山特征。
大部分月球火山的年龄在30-40亿年之间;典型的阴暗区平原,年龄为35亿年;最年轻的月球火山也有1亿年的历史。
月食现象是指当月球行至地球的阴影后时,太阳光被地球遮住。
月食现象可分为月偏食、月全食两种,当月球只有部分进入地球的本影时,就会出现月偏食;而当整个月球进入地球的本影之时,就会出现月全食。
人类登月在1969年7月时候,美国阿波罗载着三位宇航员成功登上了月球,这是人类历史上首次出现。
直到今天,月球上一共插上了6面美国国旗。
据有关报道,在美国登陆月球之后看到了外星人的采矿器和一些外星飞船。
在2013年中国嫦娥三号机器人首次登陆了月球,圆了国人多年的探月梦。
接下来重点就是嫦娥四号选择是难度极大的月球背面登陆,希望中国嫦娥四号能成功发射,能成功着陆月球背面,成功向地球人类送回珍贵的月球数据。