首页 > 科学 > 宇宙探索

探索宇宙“婴儿期”?

时间:2026-01-03来源:网络作者:小菜点击数:
简介:作者:丁旭恒(武汉大学物理科学与技术学院天文系教授)宇宙何时诞生?如何呈现今天的面貌?又会如何发展?从古至今,人类一直在仰望星空,希冀探寻宇宙的奥秘。

这既是为了

【菜科解读】

作者:丁旭恒(武汉大学物理科学与技术学院天文系教授)

宇宙何时诞生?如何呈现今天的面貌?又会如何发展?从古至今,人类一直在仰望星空,希冀探寻宇宙的奥秘。

这既是为了满足人类与生俱来的好奇心,也是为了人类的永续发展。

为了更加深入地了解宇宙,人类开始向太空发射卫星,其中,詹姆斯·韦布太空望远镜是迄今为止最先进的太空望远镜之一,它正在获取更多宇宙“婴儿期”的信息。

宇宙早期有哪些未解之谜?

大约138亿年前,宇宙从一次难以想象的极高温极高密状态中诞生,这便是大家熟知的“宇宙大爆炸”。

然而,这并非普通的爆炸,而是空间本身剧烈膨胀,就像气球被瞬间吹大。

最初几亿年,宇宙逐渐冷却,却依然一片漆黑,如同黎明前的漫漫长夜。

这一时期被称为“宇宙黑暗时代”,因为未有任何恒星或星系诞生来点亮这片广袤空间。

直到大爆炸约4亿年后,宇宙中才点亮了“第一盏灯”——第一批恒星和星系开始形成,终结了“黑暗时代”,宇宙终于迎来了“黎明时期”。

这些诞生于宇宙早期的星系,与今天在夜空中看到的近邻成熟星系大不相同。

它们通常体积更小、结构更紧密,并且活动异常剧烈——就像充满活力的青少年。

在这些早期的星系中,尤其引人注目的是类星体。

它们是宇宙中极其明亮的“探照灯”,其光芒由星系中心潜伏的超大质量黑洞驱动:当黑洞贪婪地吞噬周围物质时,会释放出难以想象的巨大能量,其亮度甚至超越整个宿主星系所有恒星的总和!

然而,一个巨大谜团随之浮现。

天文学家们惊讶地发现,在宇宙年龄尚不足10亿年,也就是宇宙“婴儿期”时,已经存在一些质量极其庞大、结构相对成熟的星系,以及质量高达太阳数十亿倍的超级黑洞。

这些宇宙“巨婴”,是如何在短暂的宇宙童年里迅速形成的?这个问题至今困扰着科学家。

更令人费解的是,这些远古星系中心的超级黑洞,似乎冥冥中与它们所在的星系绑定在一起:观测显示,黑洞的质量越大,其宿主星系中恒星的总质量通常也越大。

这种紧密关联性,在当今宇宙中已得到充分证实。

要知道,黑洞与星系的物理尺度差异堪称天壤之别——一个超大质量黑洞的引力影响范围可能仅有不到1光年,而它所在的星系却横跨数十万光年。

这就好比一颗微小的绿豆(黑洞)和一艘庞大的超级游轮(星系),两者尺寸悬殊,却仿佛被无形的纽带连接,协调一致地共同成长。

这背后隐藏的同步机制,至今仍是宇宙学中最深奥的谜题之一。

要解开这个谜题,关键在于探究宇宙极早期是否已存在这种关联。

黑洞的“家园”什么样?

探索宇宙“婴儿期”的奥秘,我们需要强大的“时间机器”。

詹姆斯·韦布太空望远镜(简称JWST)正是这样一款“神器”。

作为人类迄今建造的最强大的太空望远镜,JWST于 2021年发射升空。

它如同一位宇宙考古学家,能捕捉来自遥远过去的光线,让我们直接观测宇宙年龄仅为现在5%时的模样。

为何JWST如此独特?关键之一在于它的主要观测波段在红外波段。

来自远古星系的光线,在穿越膨胀的宇宙时被“拉长”(红移)到了红外波段。

就像一张被放慢转速的老唱片,只有依靠特殊设备才能还原原始声音。

JWST搭载的精密仪器,正是为了解析这些来自宇宙深处的微弱信号,揭开早期星系与黑洞的秘密。

2023年,由武汉大学和北京大学天文学家联合领导的国际团队,利用JWST的高灵敏度近红外相机(NIRCam),成功探测到了两颗距离地球超过130亿光年的类星体宿主星系。

团队利用NIRCam拍摄了这些星系的图像,并成功将星系中心极其明亮的类星体(剧烈活动的黑洞)点光源,与周围相对暗淡的宿主星系光芒分离开来。

这项任务的难度,堪比在耀眼的探照灯光旁寻找一只微弱的萤火虫。

这一发现,如同找到了记录宇宙剧烈“青春期”的珍贵日记。

测量结果令人震惊:其中一个宿主星系的质量高达约1300亿倍太阳质量(误差范围200亿~3300亿);

另一个相对较小,但仍有约340亿倍太阳质量(误差范围19亿~110亿)。

它们中心的黑洞质量则分别为14亿和2亿倍太阳质量。

引人关注的是,这些黑洞质量与宿主星系恒星质量之间的比例关系,与现代宇宙中观测到的规律惊人地相似。

这一发现强烈暗示,黑洞与宿主星系之间的共同演化关系,可能在宇宙极早期,也就是当它还处于“婴儿期”时,就已经建立并开始运作。

这就像发现一个幼儿园小朋友的身体比例(如身高与体重的比值)已经接近成年人,彻底挑战了科学家关于宇宙结构成长速度的传统认知。

谁给星系“青春期”踩下“急刹车”?

团队的后续研究则利用JWST的高分辨率光谱仪(NIRSpec),进一步剖析了该项目中两个类星体宿主星系的恒星组成。

分析揭示,星系中的大部分恒星形成于宇宙更早期的阶段(约大爆炸后7亿~8亿年)。

令人惊讶的是,光谱数据表明,这些星系都经历过一次剧烈的“星暴”事件——即在极短的时间尺度内(仅数千万年),爆发式地形成了海量恒星。

以其中一个星系为例,其恒星形成速率曾飙升至惊人的每年约2000倍太阳质量。

这相当于银河系当前恒星形成率的数千倍。

然而,这些星系的“高速成长期”异常短暂。

光谱中的关键线索——强烈的巴耳末吸收线,结合缺乏电离气体发射线表明,它们很快便耗尽了气体燃料,进入了“后星暴”阶段。

这些星系中缺乏年轻恒星的踪迹,表明其大规模“造星工厂”已基本“关停”。

打个比方,它们就像是经历了生长突增后,又过早停止了发育。

那么,是什么力量给这场疯狂的恒星诞生踩了“急刹车”?科学家们将目光投向了星系中心的黑洞及其强大的反馈作用——当黑洞贪婪吞噬物质时,会释放出难以想象的能量,造成强烈的辐射喷流和宇宙风。

这股能量犹如一场席卷星系的超级风暴,能将孕育新恒星的冷气体燃料加热、驱散甚至吹出星系。

失去了“原材料”,恒星形成自然戛然而止。

这描绘了一个精妙的“自我调节”图景:黑洞通过吸积物质壮大自身,同时其释放的狂暴能量又反过来抑制宿主星系的进一步扩张。

最终,两者在激烈的互动中趋于一种动态平衡,共同演化。

这次观测,首次在宇宙极早期直接捕捉到了这一关键过程,有力地证明了黑洞在星系演化中扮演着核心调节者的角色。

回望宇宙历史,从最初弥漫的混沌气体云中,经过引力作用,无数恒星逐渐聚集,最终形成了形态各异的星系。

银河系,就是这样一个包含数千亿颗恒星的“宇宙岛屿”;

太阳,只是其中一颗平凡的恒星;

而地球,不过是环绕其运行的一粒幸运的行星。

然而,正是这颗行星上诞生的人类文明,开始了对宇宙起源的追溯和对自身在浩瀚时空中位置的思考。

JWST的突破性发现更新了我们对星系演化的认知:宇宙婴儿期并非缓慢生长,而是如同按下了“快进键”,在极短的时间内便完成了庞大星系和超级黑洞的“组装”。

这些宇宙“巨婴”的迅速诞生及它们之间紧密的关联,揭示了一种深刻的宇宙演化规律——黑洞与星系绝非孤立存在,而更像一对默契共舞的搭档,在宇宙的宏大舞台上共同演绎着壮丽的篇章。

然而,还有更多谜题等待我们解答,许多根本性问题依然悬而未决:那些驱动早期宇宙“快进”的超级黑洞“种子”究竟如何快速形成?黑洞的反馈作用如何精确地调控星系的命运?在宇宙的“黎明时期”,是否还存在其他未被发现的星系与黑洞共生模式……

研究团队将在这一领域继续深耕,期待在未来对更多处于宇宙“婴儿期”的类星体及其宿主星系进行深度剖析。

你问我答

问:为什么要了解宇宙形成的早期情况?

丁旭恒:了解宇宙形成的早期情况,能帮助我们揭示宇宙的起源和发展规律。

通过研究宇宙刚诞生时的状态和“婴儿期”的星系与黑洞,科学家们可以理解宇宙是如何从一开始的高温高密状态,逐渐冷却并形成复杂结构的——这就像回看生命的成长过程,找到关键的起点和变化。

此外,直到第一批恒星和星系出现,它们发出的光打破了宇宙的“黑暗时代”,点亮了漫长的宇宙黎明。

研究这段时期,可以帮助我们了解宇宙结构是如何形成和发展的。

更令人着迷的是,早期宇宙中存在着质量庞大的黑洞与它们的宿主星系,这种黑洞与星系之间奇妙的共生关系对星系的成长起着核心作用,黑洞吞噬周围物质时释放的巨大能量,可以调节和影响周围恒星的诞生,起到“急刹车”的作用,阻止星系过快地形成恒星。

了解这种相互作用不仅揭开宇宙演化的秘密,也帮助我们理解包括银河系在内的众多星系的形成过程。

同时,探索宇宙早期推动了先进天文观测技术的发展,例如JWST太空望远镜,这种“时间机器”能看见古老光线,让我们像宇宙考古学家一样,直观地目睹宇宙过去的模样。

了解这些宇宙的根本问题,不仅能够满足人类对宇宙和自身起源的好奇心,也将加深我们对地球和整个人类在宇宙中位置的认知,激励科学进步和文明发展。

问:从目前的研究结果看,银河系中有多少黑洞?会对地球带来威胁吗?

丁旭恒:根据目前的天文学研究,银河系中估计存在数千万甚至上亿个黑洞。

其中,大部分是“恒星级黑洞”,由大质量恒星死亡坍缩形成,它们体积较小、质量通常是太阳的几倍到几十倍;

少数是“中等质量黑洞”。

此外,银河系中心存在着一个超大质量黑洞——人马座A*,质量约为太阳的400万倍。

这些黑洞对地球没有直接危险。

银河系中的黑洞基本上都远离太阳系,彼此之间的距离也非常遥远。

虽然恒星级黑洞也像普通恒星一样在银河系中运动,但其引力影响范围有限,无法吞噬太过遥远的天体。

例如,人马座A*黑洞虽然质量巨大,但距离地球约2.6万光年,其引力作用不会对地球造成威胁。

总的来说,我们目前还没有发现可能危及地球安全的黑洞,科学家们也将持续监测包括黑洞在内的可能靠近地球的天体。

《光明日报》(2025年07月31日 16版)

华山“十大谜”,让人匪夷所思!

华山的“十大谜”具体内容如下:洞里瓮是怎么回事儿:在群仙观上方登山道路旁的岩石上有一洞,洞内有黑色釉瓮一口,且瓮里还套有一洞。

石洞口小,瓮体大,此瓮如何装入洞内令人费解。

民间有顺口溜:“洞里有个瓮,瓮里有个洞,洞里的瓮里有个瓮里洞,瓮里的洞里有个洞里瓮,不知是先有洞还是先有瓮。

”仰天池何“旱而不涸,涝而不溢”:在华山极顶落雁峰(南峰)巅有一天然石凹,宽不盈尺,长约一米,呈不规则形,得名“仰天池”。

池水清澈,涝时不盈溢,旱时不枯竭,一年四时与日月同在,传说太上老君常用此水炼制金丹,其原理至今不明。

“全真岩”三字是如何刻在崖顶的:在南天门外长空栈道尽处的贺老石室上方悬崖绝壁上刻有三个斗方大的字“全真岩”,传为元代道士贺志真题刻。

此摩岩石刻在数十米高的崖壁上,且崖壁呈屋檐状,字就刻在“屋檐”下方,崖壁下就是万丈深渊,不知如何刻上去。

“云天弧光”是怎样出现的:在天梯上方两块巨石周围,夏秋时节的雨天清晨,常常会有几缕电弧一样的光芒划过,格外耀眼,使夜幕下的石纹清晰可见,弧光过后并无雷声,不知其出现原因。

“莲台佛影”是怎样出现的:在华山南峰,空气湿润,阳光朗照的日子,有时会在一片轻雾上方突然出现一团彩色的光晕,光晕正中间有一阴影,形状酷似佛身,或立或坐,惟妙惟肖,不知其形成原因。

为什么会有“燕子衔表”:在南天门外有一石台,相传是轩辕黄帝会群仙的地方。

春夏之交,常有善男信女焚表祭天神,黄表碎片纷飞漫舞天空,引来无数燕子叼衔,不知燕子为何“叼表”。

“oo”是什么字呢:在苍龙岭上方平台边崖上刻有“云海”二字,落款“oo”题,不知是什么字。

有人说是“昌”“明”二字,有人说是陕西关中方言“jiao”(意思就是太阳光很火辣),到底是什么字,至今既无稽可考,也无典可查。

为什么黑龙潭水色变化无常:黑龙潭在华山南峰,潭不大,有一平米见方,常年积水,为黑龙水府。

有时潭水呈黑色如墨,有时又清澈见底,人们不知其中奥妙,《说铃》一书称“龙在则水黑,龙去则水清”。

游山神灯是怎样出现的:明代画家王履在《玉女峰记》中记述夜宿玉女峰,夜半见峰巅崖畔有光如灯,或三或五游移不定,这就是华山神灯。

《雍胜略》记述,华山白羊峰“每至三元八节,即有神灯或三或五现于崖端”,传说见神灯者必定福寿双全。

中方仙桥为什么人来人往:在华山峪三清殿南绝壑上,因天象变化,有时远远望去,在峰壑间能隐约看见一座象彩虹一样的桥,桥上人影幢幢,如群仙聚会。

有位名叫史纪的人在《中方仙桥》诗中描述了这一景象。

光速限制:外星人来了也得认栽的宇宙“铁律”?

在浩瀚宇宙中,人类一直幻想能与外星文明来一场跨越星空的“网友见面会”。

可现实却像一盆冷水,有个叫“光速限制”的家伙,像一道无形的高墙,横在人类和外星文明之间。

这光速限制到底是啥?它咋就把大家困住了呢?今天咱就来唠唠这神秘又让人无奈的光速限制。

古代“信息延迟”的无奈:光速限制的“前世小预告”在古代,信息传递那叫一个慢。

就说打仗吧,前线战事吃紧,消息得靠快马加鞭往回送。

有时候,等皇帝收到消息,黄花菜都凉了,战局早就变了样。

于是就有了“将在外,君命有所不受”的说法,为啥?因为信息传递太慢,皇帝的命令传到前线,情况早就不一样了,将领只能自己看着办。

这其实就是光速限制在古代的“小缩影”,只不过那时候大家还不知道光速是啥,只知道信息传递慢得让人着急。

爱因斯坦的“宇宙禁令”:光速限制的“正主登场”到了近代,爱因斯坦横空出世,他的狭义相对论就像一颗重磅炸弹,在物理学界炸开了花。

相对论告诉我们,光在真空中的速度大约是每秒30万公里,这可是宇宙中的速度极限,任何有质量的物体都别想达到或者超过它。

这就像给宇宙定了个规矩,谁都得遵守。

就好比一场跑步比赛,光是那个永远跑在最前面,谁也追不上的冠军,其他选手只能眼巴巴地看着它远去。

爱因斯坦还指出,当物体的速度接近光速时,它的质量会急剧增加,所需的能量也会呈指数级飙升。

打个比方,你要让一艘1吨重的飞船达到99%的光速,那得消耗相当于全球数年总发电量的能量;

要是想达到光速,所需能量就会趋向无穷大,这在现实中根本没法实现。

就算未来人类掌握了核聚变甚至反物质能源,也满足不了这么庞大的能量需求,更别说建造能承受极端质量变化的飞船结构了。

星际“慢递”的尴尬:光速限制下的信息困境光速限制带来的最直接问题,就是信息传递的巨大延迟。

在星际时代,这种延迟会被宇宙的尺度无限放大。

比如说,地球收到来自1光年外前线的战报,那消息可是整整走了1年才到。

想象一下,2021年春节,地球收到1光年外传来的喜讯,说前线打胜仗了,地球人高兴得大摆喜宴庆祝。

可实际上,这已经是1年前的战况了,在这1年里,前线局势可能早就逆转,外星势力发起反扑,地球将士正陷入水深火热之中呢,地球的庆祝不过是对“过去”的徒劳欢呼。

就算把距离拉近到太阳系内部,这种延迟依然存在。

如果太阳附近发生一场星际“对决”,其结果要等8分钟后才能被地球上的人类观测到。

要是人类文明扩张到2光年外的星球,消息往返需要4年;

扩张到200光年外,单次信息传递就要200年;

要是到了2万光年外,信息从星球传回地球需要2万年,地球发出的回信再抵达目的地又要2万年。

在这4万年的时间里,地球的统治者都不知道换了多少代,星际殖民地与母星的联系也会逐渐断裂,到时候,2万光年外的殖民地指挥官,估计早就把地球抛到九霄云外,不会对地球保持忠诚了。

宇宙“孤岛”的命运:光速限制下的文明困局光速限制就像一道透明的屏障,把银河系分割成无数个“孤岛”。

对人类来说,它阻碍着我们的星际梦想,让我们很难在星际征程中保持整体的团结与统一,反而会走向“各自为政”的分裂状态。

按照天文学家卡尔达舍夫提出的“卡尔达舍夫指数”,文明被划分为三个主要等级。

I型文明能完全掌握并利用母行星的所有资源与能量;

II型文明能掌控整个恒星系统的资源,甚至可以直接利用恒星的能量;

III型文明能驾驭整个星系的资源,在星系尺度内自由穿梭与发展。

可人类文明目前连I型文明都还没达到,只能利用地球部分资源,对海洋、地核等深层资源的开发还处于初级阶段,在可控核聚变等关键能源技术上虽有突破,但距离“完全掌握行星资源”还有很长的路要走,科学家估算人类文明当前等级仅约为0.7型,相当于处于“婴儿期”的文明。

就算人类未来能达到II型文明,向III型文明迈进的道路也会被光速彻底封死。

因为III型文明所需的“星系尺度统筹能力”,与光速限制下的“信息延迟困境”完全矛盾。

银河系直径约为10 - 18万光年,不同星球之间的距离动辄数千、数万光年,信息传递需要数千年甚至数万年,资源调度的周期更是难以想象,人类根本无法实现有效的协调与管理。

外星文明的“同款烦恼”:光速限制的“宇宙通用版”这光速限制可不只是针对人类,就算宇宙中存在外星文明,它们大概率也得被这道鸿沟困住。

假设某个外星文明比人类先进数千年,掌握了接近光速的航行技术,可它们还是要面对“时间膨胀”的困境。

对飞船上的宇航员来说,以99%光速飞行100光年,主观时间仅过去约14年;

但对他们的母星而言,时间已流逝100年。

这意味着,当宇航员返回母星时,亲友早已老去,文明可能已发生翻天覆地的变化,这种“时间差”会让星际航行失去“回归的意义”,更别说跨越数十万光年的银河系直径,或前往更遥远的其他星系了。

而且,星际空间并非真空,而是充斥着稀薄的气体、尘埃和高能粒子。

以接近光速飞行的飞船,哪怕撞上一颗微小的尘埃,也会因巨大的相对速度产生相当于核爆炸的冲击力,瞬间摧毁飞船。

要为飞船配备足够的防护装置,又会大幅增加飞船质量,进一步加剧能量消耗的难题,这就像一个无解的循环,让光速航行的可行性愈发渺茫。

突破幻想与现实困境:光速限制的“未来猜想”虽然光速限制目前看起来牢不可破,但人类从未放弃突破它的幻想。

有人提出了虫洞和曲速引擎的概念。

虫洞理论认为,宇宙中存在连接两个时空的“通道”,通过虫洞可以瞬间跨越遥远距离,但虫洞需要“负质量物质”来维持稳定,而人类目前尚未发现任何负质量物质的存在。

曲速引擎理论认为,可以通过压缩航天器前方的空间、扩张后方的空间,让航天器“乘坐”空间的“波浪”前进,从而突破光速限制,但这种技术需要消耗巨大的能量,相当于将整个木星的质量转化为能量,以目前人类的技术水平,完全无法实现。

不过,宇宙中仍然充满了许多未解之谜,例如暗能量和暗物质的本质,以及黑洞内部的物理规律。

这些未知领域可能蕴含着颠覆我们对光速认知的秘密。

说不定未来的某一天,人类会发现新的物理原理,找到突破光速限制的方法,到时候,我们就能真正实现星际穿越,和外星文明来一场面对面的交流啦。

光速限制就像一个神秘的宇宙谜题,它既限制了人类和外星文明的发展,又激发着我们不断探索未知的欲望。

在这道看似无法逾越的鸿沟面前,我们是就此认命,还是继续努力寻找突破的方法呢?也许,答案就藏在宇宙的深处,等待着我们去揭开。

猜你喜欢

探索宇宙“婴儿期”?

点击下载文档

格式为doc格式